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Halfspaces (aka LTFs)

s f:R"™ — {—1,1} of the form
\\++/1 f(x) =sign(w -z — 0)



Halfspaces (and their intersections)
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NG f(x) = ANi_ysign(w; - — 6;)

Intersection of k-halfspaces

= polytope with k-facets



Intersections of k-halfspaces

Fundamental for several areas of math and theory CS.

Well investigated in terms of

Learning - [Vempala ’10, Klivans-O’Donnell-Servedio ‘08]
Derandomization - [Harsha-Klivans-Meka ‘10, Servedio-Tan ‘17]
Noise sensitivity - [Nazarov ‘03, Kane ’14]

Sampling - [Dyer-Frieze-Kannan ’89, Lovasz-Vempala 04, ...]



Pseudorandom Generator (PRG)

/G\

Let F be a class of Boolean
functions

v fekF

[E[F(U)] - EINGU]I < £



BPP

» Languages that admit an efficient
randomized algorithm.

xeL: Pr[A(x) =1]>2/3

X & L: Pr[A(x) =0] > 2/3



Derandomization via PRGs

/ G\

N

Suppose seed length is O(log n), € = 1/10.
xelL: Prl[A(x, G(Up) =1]>1/2

x ¢L: Pr{A(x, G(Uy) =0] > 1/2

To prove P=BPP, construct a PRG for efficient randomized
algorithms with seed length O(log n).



Our focus: derandomization

 This talk: focus on derandomization in the Gaussian
space.

Rn
« Setup: endowed with the standard normal measure.
A CR"
« Task: Produce a srpa.lkange{@ﬁi?it set of points
such that for (intersection of
k LTFs) | Pr[f(z) =1] - Pr [f(z) = 1]| < 0.01.
xrnr~ L Yn



Our focus: derandomization

Task: Produce a small and explicit set of pojdts R"
such that fof: R" — {4-1} (intersection of k

HP)| Pr (@) = 11— Pr [f(2) = 1] < 0.0L

Non-constructively;4  of sizgy(n, k) exists.

Best known explicit construction: Harsha-Klivans-Meka
gave a construction gf¥izes ~

O’Donnell-Servedio-Tan 2019: matching
construction w.r.t uniform on Boolean cube



Our main result

An explicit construction for fooling intersection of k-
halfspaces pPoltegk nO(1)  gpolylogk
on the Gaussian measure whose size is

d
>Qur construction has polynomial size for— 9(logn)

>Arguably much simpler construction.



Connection to Gaussian processes

« Connection is an overstatement -- it’s a simple
rephrasing.

 Instead of looking at AND of halfspaces, let us look at OR
of halfspaces.

f=g1(x)Vga(z)...Vgr(x)
where g;(z) = sign(w; - © — 6;)
f = Izo(maX{wl x— 01, wE T — Hk})

\ max/sup of Gaussian

processes



Main idea

* We are interested in studying a non-smooth function of
the

supremum of Gaussian processes.

ACR"
* We are interested in producing a small set SO
that Pr [Iso(max{w; -x —61,...,wg -z — O })]

I~ Yn

~ P&[Izo(max{wl "L — 917 ceey, W X — ek})}



Setting sights lower

« What if we want to producg C R" such that
E;, [max{w; - —01,...,wg -z — 0Ok}

~~ Ex/NA[maX{wl N — 01,...,w - x' — ekH

* Recall: statistics of Gaussian process governed by mean and
. : k
covariances -- determined t§; }7—1, {{w:, w;)}1<ij<k

« Johnson-Lindenstrauss can preserve covariances
approximately

by projecting on to random subspaces.



Johnson-Lindenstrauss

« Strategy: Sample a random low-dimensional subspace H.
« Sample 2’ from H. Call this distribution
Question:

(i) Mean / covariance of the distributions

{’wl'33—917---,101-@‘x—ek}xwyn%{uq-x’—@l,...,wk-x’—ﬁk}szA

Does this imply
E oy, max{w; -2 —01,...,wg - — O}
> Ex/NA[maX{wl L — (91, ey, WE =L — 916}]



Preserving expected maxima

* Yes - Sudakov-Fernique lemma (quantitative version by
Sourav Chatterjee)

« Randomness complexity of sampling from a random low-
dimensional subspace H?

« JL can be derandomized (Kane, Meka, Nelson - 2011) - in
particular, random projection from n to m dimensions
can be ~ poly(n) - 20(™).
replaced by a set of size



Preserving expected maxima

Lemma: LetXx;}" | gnd be two sets of normal
random

varighies. i
a- E[(X; — X,)%] ~ B[(Y; - V;)%]

= |E[sup X;| — E[supY;|| < +/€-logk.
Then, m——

In a nutshell: To get non-trivial approximations, we only
reed(1/logk)
O(log® k) . This can be achieved by random
projections to

dimensions.



Preserving expected maxima

Lemma: LetXx;}" | gnd be two sets of normal
random

varighies. i
a- E[(X; — X,)%] ~ B[(Y; - V;)%]

b. |E[sup X;| — E[supY;|| < /e logk.

Then, "

Main thing we need to do: Prove the same 1gf[sup X;|]
Vis-a-VisIs[sup Y;]



Quick proof sketch

Main trick: Consider smooth maxima function instead of
maxima.

k
1
Define the functioms(x1,. .., Tx) = 3 log (Zexp(ﬁxi))
i=1
log k
Fact: |g5(x1,...,2) — max(zy,...,zx)| < ;

Much easier to work with the smooth functipn



Stein’s interpolation method

« Comparing the quantitieB[gs (X1, ..., X};)] and
Elgs(Y1,...,Ys)]  °

« Condition: D ANNA have matching means and nearly
matching covariances.

 For , define

t € [0,1] Ziy = VtX; + V1 —tY;.



Key statement

Lemma:

OE|gs(Z14y-- -y Z1t)]
ot

< B - | max[Cov(X;, X;) — Cov(Y;,Y;)]|
2V

Proof is based on Stein’s formula (integration by parts) and
some

algebraic mampugat]on?
Ly

0x;

One useful fact:;=;



Putting things together

Elgs(X1, ..., Xi)] - Efsup(Xy, ..., Xp)]| < loék
Elga(Vi,... Vi) - Blsup(i, ..., Yil| < 15




Our goal

« Recall: We want to prove

E[1so(sup(Y, ..., Y3))] — B[lso(sup(X1,. .., X))]| < /e logk.

« Two step procedure:

* Prove for smooth F
E[F(95(X1- . X)) — EIF(g5(Ye,- ., YO) < |1 F llooBe+ [F" s - €

The error bound depends on derivatives of F.



Going from smooth to non-smooth

* To go from smooth test functions to non-smooth test

functions, the random variabl@ (X, ..., X)
should not

be very concentrated.

,/
s
-
-
=




Going from smooth to non-smooth

* Suppose X1,..., X} are (potentially correlated) normal
random
variables with variance 1.
sup(Xi, ..., Xg)
« How concentrated can be?

Pr{|sup(Xi,..., Xk) — 0] < €] < O(e- k).
« Easy to show:

* Much harder [Nazarov]:
Pr||sup(Xq,...,Xi) — 0| <€ < O(e-/logk).



Putting it together

* Anti-concentration bound allows us to transfer bounds

from smooth test functish  to the test 1>
function

* This proves that
E[Lso(sup(X1, .., X3)] — E[1s0(sup(Y3, .., Y3)]| < poly(e, log k).



Summary

« If we start with a set of jointly Gaussian random variables
X1,..., X} , and do a (pseudo) random projection to

obtain 'y,
=> JL implies means and covariance

preserved.

El[sup(Xy,..., Xy)] = E[sup(Y1,...,Y:)]

poly(e,log k)

« Sudakov-Fernique:

E[1>0(sup(Xy,.. ))] Rpoly(e,log k) E[1>0(sup(Yi, ..., Yx))]
« This work, we expl01



Other results

« What other statistics of Gaussians can be preserved by using
random projections?

o If Xy, ... Xp) anéYl,...,Yk) Eave - matching
covariances,

E[g(sign(X1), .. .,sign(X}))] — Elg(sign(Y1), ..., sign(Y;))]| < e poly(k).

 Proof: closeness in covariance = closeness in Wasserstein

- closeness in union of orthants distance (Chen-
Servedio-Tan)

. p@@ JQWPB@WJHWE‘B”S of LTFs on Gaussian space with seed



Other results

* Deterministic Approximate Counting:

— poly(n) 2proly(logk, €) time algorithm for counting
fraction of Boolean points in a k-face polytope, up
to additive error «.

— poly(n) 2proly(k, €) time algorithm for counting
fraction of Boolean points satisfied by an arbitrary
function of k halfspaces, up to additive error «.

* Technique based on invariance principles and
regularity lemmas.

— Beats vanilla use of a PRG that brute-forces over
all seeds!



Open questions

* PRGs for fooling DNFs of halfspaces using
similar techniques?

» Extending techniques to the Boolean
setting?



