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Halfspaces (aka LTFs) 
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Halfspaces (and their intersections) 
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Intersections of k-halfspaces

• Fundamental for several areas of math and theory CS.  

• Well investigated in terms of  

1. Learning – [Vempala ’10, Klivans-O’Donnell-Servedio ‘08] 

2. Derandomization – [Harsha-Klivans-Meka ‘10, Servedio-Tan ‘17] 

3. Noise sensitivity  -  [Nazarov ‘03, Kane ’14] 

4. Sampling – [Dyer-Frieze-Kannan ’89, Lovasz-Vempala 04, …] 



Pseudorandom Generator (PRG)

Let F be a class of Boolean 
functions

∀ f ∈ F, 

|E[f(Un)] – E[f(G(Ur))]| < ε



BPP

• Languages that admit an efficient 
randomized algorithm.  
 
 
x ∈ L:  Pr[A(x) = 1] > 2/3  
 
x ∉ L: Pr[A(x) = 0] > 2/3



Derandomization via PRGs 



Our focus: derandomization 

• This talk: focus on derandomization in the Gaussian 
space.  

• Setup:       endowed with the standard normal measure.   

• Task: Produce a small and explicit set of points 
               such that for                               (intersection of 
k LTFs)  
   
         



Our focus: derandomization 

Task: Produce a small and explicit set of points 
          such that for                                (intersection of k 
LTFs)  
   
         

Non-constructively:      of size                    exists.     

Best known explicit construction: Harsha-Klivans-Meka 
gave a construction of size  

O’Donnell-Servedio-Tan 2019: matching 
construction w.r.t uniform on Boolean cube



Our main result

An explicit construction for fooling intersection of k-
halfspaces  
on the Gaussian measure whose size is 

➢Our construction has polynomial size for  

➢Arguably much simpler construction.   



Connection to Gaussian processes

• Connection is an overstatement  -- it’s a simple 
rephrasing.  

• Instead of looking at AND of halfspaces, let us look at OR 
of halfspaces. 

max/sup of Gaussian 
processes



Main idea

• We are interested in studying a non-smooth function of 
the  

     supremum of Gaussian processes.  

• We are interested in producing a small set                so 
that



Setting sights lower

• What if we want to produce                such that  

• Recall: statistics of Gaussian process governed by mean and  
     covariances  -- determined by 

• Johnson-Lindenstrauss can preserve covariances 
approximately 

     by projecting on to random subspaces. 



Johnson-Lindenstrauss

• Strategy: Sample a random low-dimensional subspace H.  

• Sample       from H. Call this distribution   

Question:     

(i) Mean / covariance of the distributions  

 
Does this imply 



Preserving expected maxima

• Yes – Sudakov-Fernique lemma (quantitative version by  
     Sourav Chatterjee) 

• Randomness complexity of sampling from a random low- 
     dimensional subspace H?  

• JL can be derandomized (Kane, Meka, Nelson – 2011) – in  
     particular, random projection from n to m dimensions 
can be  
     replaced by a set of size 



Preserving expected maxima

Lemma: Let                and                be two sets of normal 
random 
variables  with 
a.                       , 
b.                                                 .  
Then,                                    

In a nutshell: To get non-trivial approximations, we only 
need 
                        .  This can be achieved by random 
projections to  
                dimensions. 
 



Preserving expected maxima

Lemma: Let                and                be two sets of normal 
random 
variables  with 
a.                       , 
b.                                                 .  
Then,                                    

Main thing we need to do: Prove the same for 
vis-à-vis    



Quick proof sketch

Main trick: Consider smooth maxima function instead of  
maxima. 

Define the function 

Fact:   

Much easier to work with the smooth function  



Stein’s interpolation method

• Comparing     the       quantities                                    and 
                                    :  

• Condition:                     have matching means and nearly 
     matching covariances.   

• For                  , define   
       

   



Key statement

Lemma: 

Proof is based on Stein’s formula (integration by parts) and 
some 
algebraic manipulations.  

One useful fact: 



Putting things together



Our goal

• Recall: We want to prove 

• Two step procedure:  

• Prove for smooth F 

The error bound depends on derivatives of F. 



Going from smooth to non-smooth

• To go from smooth test functions to non-smooth test  
     functions, the random variable                                
should not 
     be very concentrated.  
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Going from smooth to non-smooth

• Suppose                         are (potentially correlated) normal 
random 

variables with variance 1.  

• How concentrated can                                     be?  

• Easy to show:   

• Much harder [Nazarov]: 



Putting it together

• Anti-concentration bound allows us to transfer bounds  
     from smooth test function      to the test 
function         .  

• This proves that   



Summary

• If we start with a set of jointly Gaussian random variables  
                           , and do a (pseudo) random projection to 
obtain 
                              =>  JL implies means and covariance 
preserved. 

• Sudakov-Fernique: 

• This work, we exploit:   
     



Other results

• What other statistics of Gaussians can be preserved by using 
     random projections?  

• If                         and                          have    - matching 
covariances,  

• Proof: closeness in covariance ➔ closeness in Wasserstein   
     ➔ closeness in union of orthants distance (Chen-
Servedio-Tan) 

• PRG for arbitrary functions of LTFs on Gaussian space with seed 
                                                  . 



Other results

• Deterministic Approximate Counting:  
– poly(n) 2poly(log k, ε) time algorithm for counting 

fraction of Boolean points in a k-face polytope, up 
to additive error ε. 

– poly(n) 2poly( k, ε) time algorithm for counting 
fraction of Boolean points satisfied by an arbitrary 
function of k halfspaces, up to additive error ε. 

• Technique based on invariance principles and 
regularity lemmas. 
– Beats vanilla use of a PRG that brute-forces over 

all seeds!



Open questions

• PRGs for fooling DNFs of halfspaces using 
similar techniques? 

• Extending techniques to the Boolean 
setting?


